Step of Proof: nat_ind_tp
9,38
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
nat
ind
tp
:
1.
P
:
{k}
2.
P
(0)
3.
i
:
.
P
(
i
- 1)
P
(
i
)
4.
i
:
5.
i
0
P
(
i
)
latex
by (\p.IntInd (get_int_arg `hn` p) p)
latex
1
: .....downcase..... NILNIL
1:
5.
i
< 0
1:
6. ((
i
+ 1)
0 )
P
(
i
+ 1)
1:
(
i
0 )
P
(
i
)
2
: .....basecase..... NILNIL
2:
3.
i
:
.
P
(
i
- 1)
P
(
i
)
2:
(0
0 )
P
(0)
3
: .....upcase..... NILNIL
3:
5. 0 <
i
3:
6. ((
i
- 1)
0 )
P
(
i
- 1)
3:
(
i
0 )
P
(
i
)
.
Definitions
P
Q
origin